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Received 4 January 1993 

Absbact To study the electronic struchlre of femmagnetic clystalline compounds, their 
surfaces and adsorbed ultrathin films, a fully relativistic Green function formalism has been 
developed. For a semi-infinite system, which is described by a complex effective potential, 
the single-particle Green function and thence the layer-. kll- and spin- or symmetry-resolved 
densities of statesat the surface and in the bulk-are obtained using a layer Korringa-Kohn- 
Rostoker method. This Green function-for qlwsi-hole states-is employed in a relativistic 
one-step model formalism to yield spin- and angle-resolved photoemission intensities. 

1. Introduction 

Over the past decade, a strongly increasing number of both experimental and theoretical 
investigations have firmly established spin-resolved photoemission spectroscopy as a 
powerful too1 for studying in detail the electronic structure of ferromagnetic and non- 
magnetic crystals, their surfaces and ultrathin films adsorbed on them; see, for example 
the reviews by Feder (1985). Kirschner (1985), Kisker (1987) and Heinzmann (1990). and 
a small selection of original articles by Kezzler et a! (1987), Tamura et al (1987, 1989), 
Schneider et al (1989, 1991), Ginatempo et al (1989), GinatemPo and Gyorffv (1990), 
Gollisch and Feder (1990), Hillbrecht et nl (1990). Stoppmanns et a1 (1991). Tamura and 
Feder (1991a,b), Koenig etal  (1991) and Braun etal (1991). and the references therein. 
Maximal information can be obtained if experimental data are analysed and interpreted 
with the aid of realistic numerical calculations. To this end, fully relativistic one-step model 
photoemission formalisms have been developed for magnetic and nonmagnetic elemental 
solids (Ackermann and Feder 1985a, b, Braun et al 1985, 1987) and for non-magnetic 
elemental and compound solids (Ginatempo et a1 1985, 1989). These theories have in 
common that they are essentially generalizations of Pendq's (1976) non-relativistic layer 
Korringa-Kohn-Rostoker (KKR) photoemission theory, but they differ in formal details and 
in computational implementations. In recent applications (Stoppmanns et al 1991, Tamura 
and Feder 1991a,b) it has been demonstrated that additional information can be gained if 
the spin-resolved photoemission calculations are accompanied by relativistic layer-resolved 
density of states (LDOS) calculations using a Green function formalism developed by Tamura 
and Feder (1989) as an extension of the non-relativistic method of Hora and Scheffler (1984). 

In this paper, we present a coherent view of relativistic Green function theory of layer 
density of states and photoemission for non-magnetic and ferromagnetic systems with several 
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generalizations beyond previous work. In particular, we focus on the following aspects. The 
layer density of states method for systems with one atom per unit cell, which was only briefly 
outlined by Tamura and Feder (1989) and Tamura (1992a,b), is described in more detail 
and extended to the case of several atoms per unit cell. The underlying Green function is 
extended to connect different atomic layers. It is then employed to provide an alternative 
evaluation of the photoemission density matrix. This new form as well as the form dating 
back to Ackermann and Feder (1985a, b) are extended to handle ferromagnetic compounds. 

Our paper is organized as follows. Section 2 is devoted to the relativistic single- 
particle Green function for semi-inlinite crystalline ferromagnetic compounds including 
ultrathin overlayer films. In section 3, the corresponding layer-, spin- and symmetry-resolved 
densities of states are evaluated. Section 4 deals with spin-resolved photoemission. 

S V Halilov et a[ 

2. Layer Green function for the half-space crystalline system 

As the basis for treating one-electron excitations in a ferromagnet, we use a Duac 
Hamiltonian, in which the complex self-energy matrix is approximated by an effective 
electrostatic potential V ( E ,  r) and an effective magnetic field B (E, r )  (cf Feder 1985 section 
4.2.1. and references therein): 

A = c h . p + g m c ' + V ( E , r ) - B ~ . B ( E , r )  ( 1 )  

where c is the velocity of light, m the electron rest mass (m = 1 is supposed), with the 
standard representation 

Spin-orbit coupling and ferromagnetic exchange coupling are thus treated on an equal 
footing. Non-magnetic systems are described by equation (1) with B (E, r) = 0. 

In the following, we specialize to a semi-infinite crystal model, which may be viewed 
as a stack of atomic layers extending infinitely in the two dimensions ( x .  y )  parallel to 
the surface, with the topmost layer(s) possibly consisting of atoms of a different species. 
The potential and the magnetic field are assumed to be constant between touching muffin- 
tin spheres, but may have non-spherical contributions within the spheres. The transition 
from the constant inner potential to the vacuum (taken in negative z direction), the surface 
potential barrier, is assumed to have some smooth form with image-potential asymptotics. 

The single-particle Green function (GF) (4 x4) matrix GM could in principle be evaluated 
from a Dyson equation involving the complete interaction term of equation (1) and the 
vacuum Green function Go associated with the free part GO of our Hamiltonian: 

~ [ E - ~ o l ~ j G ~ ( r , r ' , E ) = S ( r  -r')& i , k  = 1,2,3,4 (2) 
I 

where i ,  k denote bispinor indices and & = c& - p  + jc'.  
As was proposed by Hora and Scheffler (1984) within a non-relativistic framework, it 

is however more practicable to split the potential into a contribution ttom the layer under 
consideration and the remainder. This leads to a Dyson equation involving a so-called 
empty-layer Green function G". As the first step, we now choose the vacuum GF Go in 
a way corresponding to a hypothetical empty lattice (with the same geometry as the actual 
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one). Within an empty monolayer, this vacuum (empty-space) Green function GES thus has 
to satisfy the two-dimensional Bloch theorem 

GS(r + R , r ' , E , k l )  =exp(ikllR)GS(r,r', E,kII) 

and can be constructed from the non-relativistic empty-space GF @ora and Scheffler 1984, 
equations (64 b)) 

by the following operation: 

GES(r,r', E,kl l )  = ( l / c 2 ) [ E  + fi~IG~,,&,r',  E,kll). (4) 

Here R is the two-dimensional lattice vector and k [(E' - C~)/C']'/~. It is supposed in 
equation (3) that r and r' are positioned in the same empty layer. In the case of r and 
r' positioned in different empty layers N and N' it will be useful to define the GF in the 
following form: 

where r,,N r + C,,N + RN, rAtNC = rr + c;,~, + Rk, + d N . N , ,  (IN," is an interlayer 
displacement vector, C"N is the nth hasis atom vector inside the unit cell of the N t h  layer 
and RNJ* 5 RN - RL, is the difference between two-dimensional lattice vectors of the Nth 
and N'th layers. The relativistic GES obtained by substituting equation ( 3 4  into equation 
(4) satisfies the twodiemsnional Bloch condition in both empty layers. 

In view of employing planar boundary conditions we transform equation (4) into the 
plane-wave representation (with the layer and atomic basis indices omitted): 

where U& and (us):r can be considered as amplitudes of the waves exp(ik;r) and 
exp(-ik;r'), respectively, s = f, xz are the two-component Pauli spinors, T = 1,2, 
kp" ,= {kll +g, ~gn(s)kl , )  E {@, ( k ) ' 1 and g is the vector of the two-dimensional lattice 
reciprocal to the one defined by the RN.N,. 

So far we have focused on the empty-space GF. Now we consider a semi-infinite system 
with two monolayers removed such that in general there is some finite number (slab) of 
monolayers in between (see figure I@)). For the general case of several atoms per two- 
dimensional unit cell we mean by 'monolayer' a layer infinite in the xy plane (parallel to the 
surface plane) and of a finite z thickness corresponding to the unit cell. One of the empty 
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monolayers (cf figure I@)) contains z' (the z component of the Green function argument 
r'), the other z. For this sytem, the empty-space GF is modified by a boundary correction 
G B  to yield the 'two-empty-layer Green function' GEL: 

S V Halilov et al 

GU. = GES t GB. (8) 

To evaluate GB, we fix the z' plane and consider local boundary conditions at the z plane, 
which are via simple free.-propagation phase factors equivalent to the boundary conditions 
at the planes bounding the empty monolayer. These local boundary conditions imply back- 
scattering of plane waves and can be described by local reflection matrices Ri ;  and R i a  
at planes z - E  and z + E (E + fO), respectively (cf figure l(b)). There are two possible 
situations for the scattering of the initial wave .,*I e~p[i(k;)~z] (cf equation (5)). which 
is going in the t z  direction at z > z' (see figure 1(6)), which is an enlarged part of 
figure I(a)): (i) the scattered wave u ; ~  exp[i(kj)-z] moves in the -z direction (solid bold 
line in figure 1(6)), and (ii) the scattered wave K : ~  exp[i(kl,)+z] moves in the Cz direction 
(dashed bold line in figure I@)). 

a 

7. 

Rgure 1. Illustration of the boundary 
correction oart GB of the emotvv-laver Green .. - 
function Gm (cf equations (8) and (9)). 
( a )  Sketch of a semi-infinite system with 
huo monolayers (parallel to thc sucface) 

b C removed. (b) EnlYged view of the dotted 
%ea in the right-hand empty layer of part (a). 
The upper right-pointing solid arrow stands 
for the original wavehcld. The hatched area 
symbolizes the multiple scancring series due 
to the loa l  reflection matrices Rf and 
R;,'. The leR-pointing solid m w  and the 

R;;, ' ,w- 'R;ic right-pointing dashed am)w correspond to 

Wtc as given by equations (9) and ( 9 ~ ) .  
respectively. (c) Analogous to part (b) but 
for the some monolayer (containing 9) to 
the right of the empty monolayer containing 
L. The sanering amplitudes Wt- and M=-q+H+H f. .. W-- are given by equations (9b) and (gel, 
respedively. (d )  Multiple scauering series 

I as used in parts (b)  and (c). 

I scattered waves with amplitudes W +  and 
2 I 

d 

I I ,  I ,  I ,  

The batched area in figure l(6) represents the geometrical series of the multiple 
scattering between R&- and RI,:, which can be evaluated as [ l  - R i ; R i z ] - ' .  Eventually 
we get the foUowing expression for the empty-layer GF (equation (8)) for the situation of 
figure I(a) (z > z'): 



where the amplitudes of the scattered waves are 

W,',t E (R&-Ww-+),. . ( 9 4  
Ii' rc' 

To determine the local reflection matrices, we require a scattering matrix for the 'slab' 
and matrices R+- and R-+ describing reflection from the left-hand boundary plane of the 
first empty layer and the right-hand boundary plane of the second layer, respectively (cf 
figure l(a)). If the surface (not shown) is towards the left, R-+ is - except for z in the 
first few layers the  bulk reflection matrix. For the special case of the slab consisting only 
of one (filled) monolayer, we find (in matrix form): 

(10) 

(1W 

where the tilde denotes the inclusion of the appropriate phase factors. The trmsmis- 
siodreflection matrices M'? of the monolayer with several atoms per unit cell are: 

+- - G+- + fit+[l - li.+-G-+]-'pfi-- RIO, - 
R-+ - i-+ 

IOC - 

x exp(ik;r,, - iki:rn,) 

with y -c*/[ik(E + c')]. Here ~p denote the usual relativistic angular momentum 
quantum numbers, r, is the position of the nth atom within the layer unit cell, c,,, is 

a usual single-site scattering t-matrix, and AmiPn denotes the relativistic two-dimensional 

KKR structure constants. For a slab of several monolayers, the diffraction matrices Mss' in 
equation (IO) refer to the slab and are obtained by combining the diffraction matrices of the 
individual constituent layers. 

Before obtaining the total OF for the half-space crystalline system it is convenient to 
transform the empty-layer GEL from the plane-wave representation (8a) to the spherical- 
wave representation 

GEL(rnN, rLrN,, E ,  kl) = Ges + GB = GOS,V.,N&,.~ + (CA + GB) 

XP 

K'P'"' 
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where T = 1 - ( K / I K I ) ,  i = -K ,  U = c k / ( E  + c2) and 
spinor. Go is the singlesite (irregular) part of the empty-space OF: 

S V Halilov et a1 

means the Pauli central-field 

and non-relativistic slmcture constants are 

X ~ ~ L ~ W ( C , , N  - C . , N ~  - d N , "  - R N , N , )  1 YLYL"Y,-m,dQ. 

For the amplitudes of the spherical waves BTF, scattered by the planar boundaries, we 
x'p'n' 

obtain (cf equation (8a) in the case z 2'): 

(13) 

where for the case z > z' we have non-zero only W-+ and Wc+ (equations (9) and (9a)) 
and for the case z < z' only Wt and W-- (cf figure l(c)), which are 

(9b) w+- - +-R-+l-l R+- *+t 
88; = ([I - RIO, l0C 

105 1;s $5 rr 
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Now we can complete the derivation of the total GF GIm for the half-space crystalline 
system-without empty monolayers-by means of the Dyson equation (with kll and E 
omitted): 

GLoL(r.N, rArN.) = GEL(,,+,, ra,N,) + d i N  G E L ( r , N , i N ) ~ ( i N ) ~ ~ ' ( i N , r ~ , N , )  

(14) 

s 
+ CFN, GEL(r.N, iw)u(iN,)G'Ot(iNr, rL,N,) J 

where u(rN) is the potential (a 4 x 4 matrix) in the Nth monolayer defined as u ( ~ N )  = 
V ( E , ~ N ) - ~ + . B ( E , ~ N ) .  The first (second) integration goes over the ~ t h  ( ~ ' t h )  monolayer. 
It should be noted that equation (14) holds only if the monolayers N and N' are assumed 
to be different (and possibly non-equivalent). 

The case of coinciding monolayers (N = N') must be treated separately. The samelayer 
G'O' is needed first for evaluating the second integral in equation (14) and secondly to obtain 
the layer density of states. First the empty-space layer GP GEL(rnN, is calculated as a 
combination of the two cases (z - z') 0 and (z -d)  c 0 in the limit Iz - 2'1 + 0, which 
obviously correspond to the half-crystalline system with only one (the Nth) monolayer 
removed. In this case one can formally use the expression (11) for Ga(rnN, T A f N )  with the 
appropriate delinition of ONt% due to the change of W:;. The same-layer total GF can 

then be obtained from the Dyson equation: 
K'P'"' I7 

G'"'(r,N, rA,N) = GEL(r,N, rn") + CFN CEL(r,N,iN)u(iN)GtO'(iN1 rA,N) (144 J 

with the boundary conditions for the D i m  bispinors (raN I @&) from equation (24) and 
for (rnN I 

The expansion coefficients U % b  , which are due to intra- and interlayer multiple scattering 

(boundary conditions), are 
K'&'"' 
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where atomic summation n" is done over the layer unit cell. The coefficients D" are 
given by the sum of the expressions of equations (12) and (13), specialized to N = N'. We 
now have the total GF for the case. of r and r' positioned in the same (Nth) monolayer. 

For r and r' in different layers N and N', we expand G"' analogously to equation (15) 
but with replaced by U$% , where N # N'. Substitution into the Dyson equation 

(14) together with Gn. from equation (1 1 )  leads to the following equation for U$$ : 

S V Halilov et a1 

w'f i 'd  K'fi'"' 

r'p'n' 

or eventually 

where the atomic summations n" and 5" are done over the Nth and N'th layer unit cells, 
respectively. We note that equation (20) actually gives U"' explicitly, since the 'same- 
layer' U"" occurring on the right-hand side has already been determined by equation 
(18). 

3. The KII-resolved layer density of states 

It is rather straightforward now to evaluate the kpsolved  layer (indeed local) density of 
states (LDOS) from equation (15) for the GF at coinciding monolayers ( N  = N'): 

(21) N.,~(kll, E )  = - - T r I m G ~ ~ ( r , N , r ~ , N , k l l , E )  = - - ~ h { ~ p , s l G " [ ~ p , s )  

where I K ~ ,  7 )  is the spin-angular part of the eigenfunction of the free Dirac Hamiltonian: 

1 1 

Ypr z 

Substitution of equation (15) into (21) gives the following expression for the layer- and 
angle-resolved density of states: 

where U$$ is defined by equation (18) and 
w n  
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with the following matching conditions for the radial parts of the regular and irregular 
(superscripts R and I) wavefunctions 

at r > R,", where R," is the muffin-tin radius of the nth atom. 
If we @ansfom the spin-angular K P  representation of equation (21) into an (lms) 

representation, the LDOS N in equation (21) decomposes into N+ and N - ,  i.e. spin-resolved 
densities of states. In a ferromagnet these strictly correspond to majority and minority 
spin states, if spin-orbit coupling is neglected. For non-magnetic systems with spin-orbit 
coupling, we can-by using appropriate double group basis functiondecompose N into 
contributions from different double group symmetry types. 

We point out once more that the layer dependence of the LDOS is determined by the 
boundary-reflection conditions through U%; containing left- and right-hand side reflection 

matrices R+- and R-+ (equation (18)). For monolayers of a certain type there is a typical 
common right-hand side matrix R-+, while the left-hand side matrices R+- depend also 
on the position of a given monolayer and essentially determine the development of the 
LDOS on going from the surface into the depth of the system. These reflection matrices are 
conveniently calculated by means of the normal-mode @loch-wave) method (yielding the 
bulk reflection matrix) and a layer T-ma!rix multiplication scheme. 

x'p'n' 

4. Spin-resolved photoemission 

We can now proceed to the calculation of the spin- and angle-resolved photocurrent. 
Our approach is in essence a relativistic generalization of Pendry's (1976) Schriidinger- 
equation-based onestep model formalism. We thus have to evaluate the lowest-order 
contributing diagram (the 'naked' triangle) obtained from non-equilibrium perturbation 
theory (cf Keldysh 1965, Caroli et a1 1973). The individual elemon and hole Green 
functions are renormalized, but vertex corrections are ignored. The hole enters via its 
spectral density function. The photocurrent is then described by a spin-density matrix p, 
which in the detection plane (vacuum) is completely represented by the following 2 x 2 
matrix (in the Pauli spinor basis) (cf Ackermann 1985, Ackermann and Feder 1985a,b 
equation (25)) 

prr, = (1/2i)[A+ -&I (250) 
where 

I r )Adr)Gtm(r , r ' ,  E -hm,kIi)A:(r')(r' I *&) 
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The atomic summation is done over one unit cell of the Nth monolayer and J.A~,N is 
the number of unit cells within the Nth monolayer. With the aid of the spin-density matrix 
p the spin-averaged photocurrent i, the photoelectron spin polarization P and spin-resolved 
photocurrent I ,  can be expressed as i = Trp, P = Tr[up]/i, I ,  = (1 + rP . n)i/2, 
respectively, where the unit vector n defines the direction of the spin analysis. The retarded 
GF Gtot(rnN, rL,N,, E -Eo, kll) as usual describes all the scattering paths for the hole going 
from rnN at the nth atom of the N t h  monolayer to rL8Nv. The interaction of the electron with 
a monochromatic electromagnetic field given by u(r)gmz, where a ( r )  is the spatial part of 
the magnetic vector potential, is given as 

A&) = 2 .a(r)e'"'. (26) 

We note that a ( r )  should actually incorporate the optical response of the solid (especially 
in the surface region). In most applications a(r) has so far been approximated by aoev', 
where is the amplitude in the vacuum region, or simply by ao. which corresponds to the 
electric dipole approximation. The final state (r I is related to a so-called low-energy 
electron diffraction ( E D )  state by the time-inversion operation k with the appropriate 
phases for the different spin states r = &1/2 

S V Halilov et al 

where (r I describes the free-electron wavefunction at the plane of observation, which 
is parallel to the surface. 

Using our Green function results (section 3). we now develop equation (25) into a more 
explicit form, which makes its physical content more visible and which can be employed in 
numerical computations. The final state can be written at the nth atmn of the Nth monolayer 
in the spherical-wave representation as 

where as before I@&) means the Dirac bispinor regular at the origin. The amplitudes of this 
expansion A:;" are calculated by a layer T-matrix combination scheme starting from the 
free state (r I at the plane of observation and going up to the given Nth monolayer. 
Substituting equation (15) for the GP (with one of the layer labels N replaced by N') and 
equation (28) for the final state into equation (Zb), we get 
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where Ga(rnN.rAN) is the atomic-like GF (equation (16)). 
Eventually we obtain 

where 

and &&,N denotes the unit cell area of the Nth monolayer. The photocurrent thus manifestly 
is a sum of contributions from the different atoms in the unit cell of a layer (index n) and 
from the individual layers (index N) (the number of which is d e t m h e d  by the decay of 
the final state). For each pair (N, n),  the first term in equation (30) (involving the atomic 
'lower-state' atomic Green function C,) represents a contribution from the (hypothetically) 
isolated single crystal atom and the second one (characterized by the 'lower-state' boundary 
correction coefficients U) gives contributions due to intra- and interlayer multiple scattering 
of the lower-state wave field. We note that the above formulation allows for inelastic 
scattering within the core repion. We do not elaborate here on the integrals ('matrix 
elements') in equation (30), since these have the same smcture as in related work, where 
they have already been discussed in detail (Ackermann and Feder 1985a, Braun et a1 1985, 
1987, Ginatempo et a1 1989). 

5. Conclusion 

We have developed a fully relativistic Green function formalism to connect different atomic 
layers (with several atoms per unit cell) of a semi-infinite crystalline system-including 
adsorbates and thin films-which may be ferromagnetic. The underlying singleparticle 
effective potential can be complex and need not be spherically symmetric inside atomic 
spheres. From the 'same-layer' special case of this Green function we derived layer-, spin- 
and symmetry-resolved densities of states. The general form was employed to treat-in 
a dynamical way-the 'lower-state' part in a relativistic one-step model photoemission 
formalism. This allows one to include the hole lifetime from the start. As a by-product we 
obtain the complex bulk band structure via diagonalization of the matrix, which transfers 
the total wave field across a bulk layer. In deriving our Green function, we used in an 
intermediate step an 'empty-layer Green function' relating to the semi-infinite system with 
the 'current' two layers removed. An alternative approach consists of removing only one 
layer, the source layer of the Green function, calculating the corresponding empty-layer 
Green function for z at the layer boundary and then propagating it through the adjacent 
atomic layers up to a second layer (which is not empty, in contrast to our above formulation). 
This empty-layer Green function is then used in a Dyson equation to obtain the actual CP. 
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A third approach (which is a modification of the previous one) employs the single empty- 
layer Green function to obtain the actual Green function at the boundq of the source 
layer. The actual GF is then propagated to the second layer and reexpanded with respect 
to spherical solutions within this layer. These seemingly different approaches are of course 
mathematically equivalent. It is a question of computational convenience which-if any- 
might actually be preferable over the others. Numerical work employing the layer density 
of states and photoemission expressions presented here is currently in progress. 

The present layer Green function is also a key element for further theoretical devel- 
opments like the practical inclusion of higher-order Keldysh diagrams into photoemission 
formalisms and a realistic treatment of optical and magneto-optical processes in surface and 
thin-film systems. 

S V Hulilov et al 
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